Back to index

Variation of parameters

Professors definition/derivations during lecture I found this to be too big brain for me. Here is a simplified definition:

Variation of parameters is a method to solve:

$$ay''+by'+cy=f(t)$$

voparam

First, find the homogenous solution:

$y_{h}=c_{1}y_{1}(t)+c_{2}y_{2}(t)$

Now we need the particular solution, let $y_{p}$ be in the following form:

$y_{p}(t)=v_{1}(t)y_{1}(t)+v_{2}(t)y_{2}(t)$ btw $y_{1}$ and $y_{2}$ are often called a fundamental pair. They are obtained from your homogenous solution.

Impose the following:

  1. $v_{1}'y_{1}+v_{2}'y_{2}=0$

Compute the derivatives and simplify:

$y_{p}'=v_{1}y_{1}'+v_{2}y_{2}'$

$y_{p}''=v_{1}'y_{1}'+v_{1}y_{1}''+v_{2}'y_{2}'+v_{2}y_{2}''$

Now we plug those into the second order equation and simplify:

  1. $v_{1}'y_{1}'+v_{2}'y_{2}'=\frac{f(t)}{a}$

We now have a system of two equations (1 and 2). Now we can solve for $v_{1}$ and $v_{2}$:

Using Cramer's rule, we can solve for the system of equations and obtain the solutions:

$v_{1}'=-\frac{{f(t)y_{2}(t)}}{aW[y_{1},y_{2}]}$; $v_{2}'=\frac{{f(t)y_{1}(t)}}{aW[y_{1},y_{2}]}$ integrate both sizes to get $v_{1}$ and $v_{2}$. When integrating, you don't need to add a generic constant.

also, $W[y_1,y_{2}]$ is the Wrońskian, and it equals to: $\det \begin{pmatrix}y_{1}&y_{2}\\\\ y_{1}' &y_{2}'\end{pmatrix}=y_{1}y_{2}'-y_{2}y_{1}'$

Finally, the general solution is:

$$y(t)=y_{h}+y_{p}\qquad \text{where}\qquad y_{p}(t)=v_{1}(t)y_{1}(t)+v_{2}(t)y_{2}(t)$$

What you need to remember

remember

So, what do you need to commit to memory? I believe memorizing these three is a good tradeoff between memory allocated and speed for when you're solving a voparam problem:

  1. $y_{p}(t)=v_{1}(t)y_{1}(t)+v_{2}(t)y_{2}(t)$

  2. $v_{1}'=-\frac{{f(t)y_{2}(t)}}{aW[y_{1},y_{2}]}$

  3. $v_{2}'=\frac{{f(t)y_{1}(t)}}{aW[y_{1},y_{2}]}$

Alternatively, you could memorize the system of equations and solve for $v_{1}'$ and $v_{2}'$. Ie:

  1. $y_{p}(t)=v_{1}(t)y_{1}(t)+v_{2}(t)y_{2}(t)$

  2. $v_{1}'y_{1}+v_{2}'y_{2}=0$

  3. $v_{1}'y_{1}'+v_{2}'y_{2}'=\frac{f(t)}{a}$

This is what the prof likes. I love you Dr. Minev, but this I personally disagree with. I think I'll stick with the formulas.


ex second_order IVP voparam mouc

Solve the IVP:

$$y''+4y=2\tan(2t)-e^t \qquad y(0)=0 \qquad y'(0)=\frac{4}{5}$$

Can we use undetermined coefficients? Yes and no. We can use it on the $e^t$ term. However, guessing and checking $y_{p}$ for the $2\tan(2t)$ term might take a really, really long time.

First, find general solution to homogenous counterpart:

$y''+4y=0$ $r^2+4=0$ $r_{1,2}=\pm 2i$

$y_{h}(t)=c_{1}\cos(2t)+c_{2}\sin(2t)$ Done. Easy peasy.

For $-e^t$ lets use method of undetermined coefficients:

$y''+4y=-e^t$

$y_{p_{1}}(t)=Ae^{t}$

$5Ae^t=-e^t$

$A=-\frac{1}{5}$

$y_{p_{1}}(t)=-\frac{1}{5}e^t$

Now for $2\tan(2t)$, we cannot realistically use method of undetermined coefficients.

Let's use variation of parameters instead:

$y''+4y=2\tan(2t)$

$y_{p_{2}}(t)=v_{1}(t)y_{1}(t)+v_{2}(t)y_{2}(t)$

where $y_{1}=\cos(2t)$, $y_{2}=\sin(2t)$

recall:

$v_{1}'=-\frac{f(t)y_{2}}{aW[y_{1},y_{2}]}$

$v_{2}'=\frac{f(t)y_{1}}{aW[y_{1},y_{2}]}$

plugging in:

$v_{1}'=-\frac{2\tan(2t)\sin(2t)}{(1)(\cos2t(2)\cos2t-\sin2t(-2)\sin2t}=-\frac{2\tan(2t)\sin(2t)}{2\cos^22t+2\sin^22t}=-\tan(2t)\sin(2t)$

$v_{2}'=\frac{2\tan(2t)\cos(2t)}{2}=\sin(2t)$ isn't it nice how we can reuse our computation for the denominator? :D

Now we integrate.

$v_{2}=-\frac{1}{2}\cos(2t)$ Don't add a constant of integration, we want one solution only.

$v_{1}=-\int \frac{\sin^2(2t)}{\cos(2t)} \, dt$

$v_{1}=-\int \frac{{1-\cos^2(2t)}}{\cos(2t)} \, dt$

$v_1=-\int sec(2t) \, dt+\int \cos(2t) \, dt$

$v_{1}(t)=-\frac{1}{2}\ln\mid sec(2t)+\tan(2t)\mid+\frac{1}{2}\sin(2t)$

$y_{p_{2}}(t)=v_{1}(t)\cos(2t)+v_{2}(t)\sin(2t)$

^Now you can start to see how guessing $y_{p_{2}}$ would take a really, really long time.

$y(t)=y_{h}(t)+y_{p_{1}}(t)+y_{p_{2}}(t)$

=$c_{1}\cos(2t)+c_{2}\sin(2t)+v_{1}(t)\cos(2t)+v_{2}(t)\sin(2t)-\frac{1}{5}e^t$

is the general answer.

IVP solution:

$y(0)=0=c_{1}-y_{p}(0)=c_{1}-\frac{1}{5} \implies c_{1}=\frac{1}{5}$

$y'(0)=\frac{4}{5}=2c_{2}+v_{1}'(0)+2v_{2}(0)-\frac{1}{5} \implies c_{2}=1$

$$y(t)=\frac{1}{5}\cos(2t)+\sin(2t)-\frac{1}{5}e^t+v_{1}(t)\cos(2t)+v_{2}(t)\sin(2t)$$

end of lecture 9 start of lecture 10

ex second_order voparam mouc

Find the general solution for:

$$y''-2y'+y=e^t\ln(t)+2\cos(t)$$

Find homogenous solution first:

$r^2-2r+1=0$

$r_{1,2}=1$ (repeated root)

$y_{h}(t)=c_{1}e^t+c_{2}te^t$

  1. $y_{p}(t)=?$

$y''-2y'+y=2\cos (t)$

let's use method of undetermined coefficients:

$y_{p_{1}}=A\cos(t)+B\sin(t)$ is our guess

$y_{p_{1}}'=-A\sin t+B\cos t$

$y_{p_{1}}''=-A\cos t-B\sin t$

$-A\cos t-B\sin t+2A\sin t-2B\cos t+A\cos t+B\sin t=2\cos t$

$-2B\cos t+2A\sin(t)=2\cos t(t)$

$\implies A=0,\ B=-1$

$y_{p_{1}}=-\sin(t)$

$y''-2y'+y=e^t\ln(t)$ cant use undetermined coefficients, use variation of parameters

$y_{p}''(t)=v_{1}y_{1}+v_{2}y_{2}$

$=v_{1}e^t+v_{2}te^t$

Compute $v_{1}$ and $v_{2}$. This time let's do it using the linear system for practice:

eq1) $e^tv_{1}'+te^tv_{2}'=0$

eq2) $e^tv_{1}'+(te^t+e^t){v_{2}'}=e^t{\ln t}$

subtract eq1 from eq2: $v_{2}'=\ln(t)$

$v_{2}(t)=\int \ln(t) \, dt$

integrate by parts

$=t\ln(t)-\int t\frac{1}{t} \, dt$

$=t\ln(t)-t$ no constant of integration.

compute $v_{1}$ now:

$v_{1}'=-tv_{2}'$

$=-t\ln t$

integrate to get $v_1$:

$v_{1}=-\int t\ln t \, dt$

integrate by parts (btw integration by parts will be the most important integration technique in this course):

$v_{1}=-\frac{1}{2}(t^2\ln t)-\int t^2\frac{1}{t} \, dt$

$=-\frac{1}{2}\left( t^2\ln t-\frac{t^2}{2} \right)=-\frac{1}{2}t^2\ln t+\frac{1}{4}t^2$

$y_{p}''(t)=(\frac{1}{2}t^2\ln t+\frac{1}{4}t^2)e^t+(t\ln t-t)te^t$

$y_{p}(t)=-\sin(t)+\frac{1}{2}t^2\ln(t)e^t-\frac{3}{4}t^2e^t$

general solution is produced by adding the homogenous eq with $y_{p}(t)$

general solution:

$$y(t)=c_{1}e^t+c_{2}te^t-\sin(t)+\frac{1}{2}t^2\ln(t)e^t-\frac{3}{4}t^2e^t$$

We are done.

Back to index