Back to index

start of lec 19

This lecture we will learn about periodic functions, specifically, non-sinusoidal periodic functions.

Periodic function

periodic

Definition:

$f$ is periodic with period $T \quad (T>0)$ if:

$$f(t)=f(t+T), \quad \forall\ t\in \mathbb{R}$$

draw

We will now compute laplace transforms of these periodic functions. Computing DE's containing these periodic functions using something like voparam would not be easy.

Let's try taking the laplace of a periodic function $f(t)$:

If we take the windowed version of the function (one period, where everywhere else is 0, ie:)

$f_{T}(t)=\begin{cases}f(t)\ ,\ & 0\leq t\leq T \\\\0\ ,\ & \text{otherwise}\end{cases}$

we can "glue together" many of these windows together to rebuild our $f(t)$, like this:

$f(t)=f_{T}(t)+f_{T}(t-T)+f_{T}(t-2T)+\dots$

We can add some unit step functions strategically such that it doesn't change the overall expression:

$f(t)=f_{T}(t)+f_{T}(t-T)u(t-T)+f_{T}(t-2T)u(t-2T)+\dots$

hit it with the LT!

$\mathcal{L}\{f\}=\mathcal{L}\{f_{T}\}+\mathcal{L}\{f_{T}(t-T)u(t-T)\}+\dots$

recall the formula from last lec: $\mathcal{L}\{u(t-a)f(t-a)\}=e^{-as}F(s)$

then:

$\mathcal{L}\{f\}=\mathcal{L}\{f_{T}\}(1+e^{-Ts}+e^{-2Ts}+e^{-3Ts}+\dots)$

$\mathcal{L}\{f\}=\mathcal{L}\{f_{T}\}(1+e^{-Ts}+(e^{-Ts})^{2}+(e^{-Ts})^{3}+\dots)$

This is a geometric series! $1+r+r^2+\dots$

Geometric series are convergent when $|r|<1$

and equal to: $\frac{1}{1-r}$

in this case, $r=e^{-Ts}$

so:

$$\mathcal{L}\{f\}=\mathcal{L}\{f_{T}\} \frac{1}{1-e^{-Ts}}$$

handy formula! ^ will be used again.

ex

Imagine another function: (image is of a square wave with a period of 2a, oscillates between 1 and 0, starts at 1 when t=0.)

draw

Let's compute its LT:

$\mathcal{L}\{f\}=\mathcal{L}\{f_{2a}\} \frac{1}{1-e^{-2as}}$

$f_{2a}=u(t)-u(t-a)$ (this is the first period piece)

$\implies \mathcal{L}\{f_{2a}\}=\mathcal{L}\{u(t)\}-\mathcal{L}\{u(t-a)\}=\frac{1}{s}- \frac{e^{-as}}{s}$

plug back in:

$\mathcal{L}\{f\}=\mathcal{L}\{f_{2a}\} \frac{1}{1-e^{-2as}}=\frac{1}{s}\cancel{ (1-e^{-as}) } \frac{1}{\cancel{ (1-e^{-as}) }(1+e^{-as})}$

$$\mathcal{L}\{f\}=\frac{1}{s(1+e^{-as})}$$

ex IVP periodic second_order_nonhomogenous LT partial_fractions

Solve for $y(t)$ in the following second order periodic equation:

$$y''+3y'+2y=f(t) \qquad y(0)=y'(0)=0 \quad a=1$$where $f(t)$ is from the previous example and $a$ is the width of $\frac{1}{2}$ of a period in the function $f(t)$. This means $f(t)$ has a period of $T=2$

Hit it with the LT!

$s^2Y+3sY+2Y=\mathcal{L}\{f\}= \frac{1}{s(1+e^{-1s})}$

$(s+1)(s+2)Y= \frac{1}{s(1+e^{-1s})}$

$Y(s)=\frac{1}{s(s+1)(s+2)} \frac{1}{1+e^{-s}}$

What property can we use to find the inverse of that?

psst. We can use $\mathcal{L}\{y\}=\mathcal{L}\{y_{T}\} \frac{1}{1-e^{-Ts}}$ ;)

$Y(s)=Y_{T}(s) \frac{1}{1+e^{-s}}$ But this is not true! because:

That second term has a $1+e^{-Ts}$ term in the denominator, it doesn't match up in the formula. There is a fix, peep this:

$Y(s)=Y_{T}(s) \frac{1-e^{-s}}{(1+e^{-s})(1-e^{-s})}$

$Y(s)=Y_{T}(s) \frac{1-e^{-s}}{1-e^{-2s}}$ We are rather lucky, the 2 in the denominator matches $T$, the period of our function.

We can tuck away the numerator into $Y_{T}(s)$ (this does redefine $Y_{T}$ to the correct expression, and the equation below is now true.)

$Y(s)=\underbrace{ \frac{1-e^{-s}}{s(s+1)(s+2)} }_{ Y_{T}(s) } \frac{1}{1-e^{-2s}}$

Our equation is now in the correct form. We can now calculate the inverse of $Y_{T}(s)$

Split up $Y_{T}(s)$ :

$Y(s)= \underbrace{ (\frac{1}{s(s+1)(s+2)} }_{ F_{1}(s) }-\underbrace{ \frac{e^{-s}}{s(s+1)(s+2)} )}_{F_{2}(s) } \frac{1}{1-e^{-2s}}$

We can use partial fractions for the first term and

$\mathcal{L}\{u(t-a)f_{1}(t-a)\}=e^{-as}F_{1}(s)$ for the second term. (Where $a=1$)

Using partial fractions:

$\frac{1}{s(s+1)(s+2)}=\frac{A}{s}+\frac{B}{s+1}+\frac{C}{s+2}$

$A(s+1)(s+2)+Bs(s+2)+Cs(s+1)=(A+B+C)s^2+(3A+2B+C)s+2A=1$

$2A=1\implies A=\frac{1}{2}$

$\frac{3}{2}+2B+C=0$

$\frac{1}{2}+B+C=0$

subtract the two equations.

$1+B=0\implies B=-1$

$\implies C=\frac{1}{2}$

$\mathcal{L}^{-1}\{F_{1}\}=\mathcal{L}^{-1}\{\frac{1}{2} \frac{1}{s}-\frac{1}{s+1}+\frac{1}{2} \frac{1}{s+2}\}$

$\mathcal{L}^{-1}\{F_{1}\}=f_{1}(t)=\frac{1}{2}-e^{-t}+\frac{1}{2}e^{-2t}$

Second term, $F_{2}(s)$, use: $\mathcal{L}\{u(t-a)f_{1}(t-a)\}=e^{-as}F_{1}(s)=F_{2}(s)$

$f_{2}(t)=u(t-1)(\frac{1}{2}-e^{-(t-1)}+\frac{1}{2}e^{-2(t-1)})$

recombine the two parts:

$Y_{T}=F_{1}-F_{2}$

$\mathcal{L}^{-1}\{Y_{T}\}=\mathcal{L}^{-1}\{F_{1}\}-\mathcal{L}^{-1}\{F_{2}\}$

$y_{T}(t)=f_{1}(t)-f_{2}(t)$

$y(t)$ is a periodic function, with period of $T=2$

It's windowed form, $y_{T}$, is:

$$y_{T}(t)=\frac{1}{2}+\frac{1}{2}e^{-2t}-e^{-t}-u(t-1)(\frac{1}{2}-e^{-(t-1)}+\frac{1}{2}e^{-2(t-1)})$$

Peep da plot!

Plot

Back to index