Back to index
Exact equations
two variable equations
d F = ∂ F ∂ x d x + ∂ F ∂ y d y = 0 dF=\frac{ \partial F }{ \partial x }dx+\frac{ \partial F }{ \partial y }dy=0 d F = ∂ x ∂ F d x + ∂ y ∂ F d y = 0 suppose it equals to zero (as shown in the equation) you get a horizontal plane (a constant)
so F ( x , y ) = C F(x,y)=C F ( x , y ) = C
the solution to these exact equations is given by F ( ) F() F ( ) but how do we recover F F F from it's partial derivatives?
Equation of the form: M ( x , y ) d x + N ( x , y ) d y = 0 M(x,y)dx+N(x,y)dy=0 M ( x , y ) d x + N ( x , y ) d y = 0
I'm calling this de_exact
is called exact if M ( x , y ) = ∂ F ∂ x M(x,y)=\frac{ \partial F }{ \partial x } M ( x , y ) = ∂ x ∂ F and N ( x , y ) = ∂ F ∂ y N(x,y)=\frac{ \partial F }{ \partial y } N ( x , y ) = ∂ y ∂ F for some function F ( x , y ) F(x,y) F ( x , y )
then differentiating we get:
∂ M ∂ y = ∂ 2 F ∂ y ∂ x \frac{ \partial M }{ \partial y }=\frac{ \partial^{2} F }{ \partial y\partial x } ∂ y ∂ M = ∂ y ∂ x ∂ 2 F
∂ N ∂ x = ∂ 2 F ∂ x ∂ y \frac{ \partial N }{ \partial x }=\frac{ \partial^{2} F }{ \partial x\partial y } ∂ x ∂ N = ∂ x ∂ y ∂ 2 F Order of going in x then y vs y then x doesn't matter as it lands you on the same point.
We equate the two and obtain a way to check if an equation is exact:
Exact equation⇒ ∂ M ∂ y = ∂ N ∂ x \Rightarrow \frac{ \partial M }{ \partial y }=\frac{ \partial N }{ \partial x } ⇒ ∂ y ∂ M = ∂ x ∂ N if it's continuous (?)
also: Exact equation⇐ ∂ M ∂ y = ∂ N ∂ x \Leftarrow \frac{ \partial M }{ \partial y }=\frac{ \partial N }{ \partial x } ⇐ ∂ y ∂ M = ∂ x ∂ N
Test for exactness:
exact ⟺ ∂ M ∂ y = ∂ N ∂ x \iff \frac{ \partial M }{ \partial y }=\frac{ \partial N }{ \partial x } ⟺ ∂ y ∂ M = ∂ x ∂ N (this can be proved, but it wasn't proved in class)
end of lecture 4
start of lecture 5
last lecture we talked about exact equations
We only knew about N and M which are the partials of F()
so how do we recover F?
between N and M, choose the one that is easier to integrate. Let's choose M.
M = ∂ F ∂ x M=\frac{ \partial F }{ \partial x } M = ∂ x ∂ F
F ( x , y ) = ∫ M ( x , y ) d x F(x,y)=\int M(x,y) \, dx F ( x , y ) = ∫ M ( x , y ) d x
F ( x , y ) = ∫ M ( x , y ) d x + g ( y ) F(x,y)=\int M(x,y) \, dx+g(y) F ( x , y ) = ∫ M ( x , y ) d x + g ( y ) where g is any function of y. The constant of integration may depend on y because if you undo by differentiating with respect to x the term would still disappear.
now 2nd condition: N = ∂ F ∂ y = ∂ ∂ y ∫ M ( x , y ) d x + g ′ ( y ) = N ( x , y ) N=\frac{ \partial F }{ \partial y }=\frac{ \partial }{ \partial y }\int M(x,y) \, dx+g'(y)=N(x,y) N = ∂ y ∂ F = ∂ y ∂ ∫ M ( x , y ) d x + g ′ ( y ) = N ( x , y )
to reiterate, first test if equation is exact, then take m or n and integrate with x or y respectively then differentiate with respect to y or x respectively.
ex de_exact
( 2 x y + 3 ) ⏟ M d x + ( x 2 − 1 ) ⏟ N d y = 0 \underbrace{( 2xy+3 )}_{ M }dx+\underbrace{ (x^2-1) }_{N}dy=0 M ( 2 x y + 3 ) d x + N ( x 2 − 1 ) d y = 0
∂ M ∂ y = 2 x = ∂ N ∂ x = 2 x \frac{ \partial M }{ \partial y }=2x=\frac{ \partial N }{ \partial x }=2x ∂ y ∂ M = 2 x = ∂ x ∂ N = 2 x so its exact!
∂ F ∂ y = N ( x , y ) = x 2 − 1 \frac{ \partial F }{ \partial y }=N(x,y)=x^2-1 ∂ y ∂ F = N ( x , y ) = x 2 − 1
integrate N ( x , y ) N(x,y) N ( x , y ) wrt to y:
F ( x , y ) = ( x 2 − 1 ) y + g ( x ) F(x,y)=(x^2-1)y+g(x) F ( x , y ) = ( x 2 − 1 ) y + g ( x ) (side note: although we say g is any function, it should be differentiable tho)
∂ F ∂ x = M ( x , y ) = 2 x y + 3 = 2 x y + g ′ ( x ) \frac{ \partial F }{ \partial x }=M(x,y)=2xy+3=2xy+g'(x) ∂ x ∂ F = M ( x , y ) = 2 x y + 3 = 2 x y + g ′ ( x )
g ( x ) = 3 x + C 1 g(x)=3x+C_{1} g ( x ) = 3 x + C 1
F ( x , y ) = ( x 2 − 1 ) y + g ( x ) ⇒ F ( x , y ) = ( x 2 − 1 ) y + 3 x = C 2 − C 1 = C F(x,y)=(x^2-1)y+g(x)\Rightarrow F(x,y)=(x^2-1)y+3x=C_{2}-C_{1}=C F ( x , y ) = ( x 2 − 1 ) y + g ( x ) ⇒ F ( x , y ) = ( x 2 − 1 ) y + 3 x = C 2 − C 1 = C
We are done:
( x 2 − 1 ) y + 3 x = C (x^2-1)y+3x=C ( x 2 − 1 ) y + 3 x = C
there is also another method to solve exact equations (see Wikipedia article, but the prof says this method is easier, I believe him)
Back to index